Paper Reference(s) 66664/01 Edexcel GCE

Core Mathematics C2

Advanced Subsidiary

Monday 10 January 2011 – Morning

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation or integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 10 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

H35403A This publication may only be reproduced in accordance with Edexcel Limited copyright policy. ©2011 Edexcel Limited.

1.
$$f(x) = x^4 + x^3 + 2x^2 + ax + b$$
,
where *a* and *b* are constants.When $f(x)$ is divided by $(x - 1)$, the remainder is 7.(a) Show that $a + b = 3$.(a) Show that $a + b = 3$.(2)
When $f(x)$ is divided by $(x + 2)$, the remainder is -8 .(b) Find the value of *a* and the value of *b*.(5)2.In the triangle *ABC*, *AB* = 11 cm, *BC* = 7 cm and *CA* = 8 cm.(a) Find the size of angle *C*, giving your answer in radians to 3 significant figures.(3)(b) Find the area of triangle *ABC*, giving your answer in cm² to 3 significant figures.(3)3.The second and fifth terms of a geometric series are 750 and -6 respectively.
Find

(a	t) the common ratio of the series,	
		(3)
(<i>k</i>	b) the first term of the series,	
		(2)
(0) the sum to infinity of the series.	
		(2)

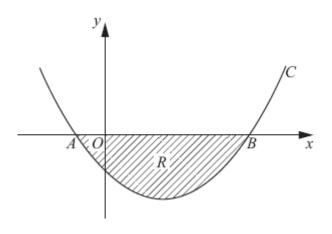


Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = (x+1)(x-5)$$

The curve crosses the *x*-axis at the points *A* and *B*.

(*a*) Write down the *x*-coordinates of *A* and *B*.

The finite region *R*, shown shaded in Figure 1, is bounded by *C* and the *x*-axis.

- (*b*) Use integration to find the area of *R*.
- 5. Given that $\binom{40}{4} = \frac{40!}{4!b!}$,

4.

(*a*) write down the value of *b*.

In the binomial expansion of $(1 + x)^{40}$, the coefficients of x^4 and x^5 are p and q respectively.

(b) Find the value of
$$\frac{q}{p}$$
. (3)

(1)

(6)

(1)

$$y = \frac{5}{3x^2 - 2}$$

(a) Copy and complete the table below, giving the values of y to 2 decimal places.

X	2	2.25	2.5	2.75	3
у	0.5	0.38			0.2

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{2}^{3} \frac{5}{3x^2 - 2} dx$.

(2)

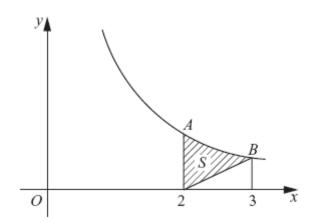


Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = \frac{5}{3x^2 - 2}$, x > 1.

At the points *A* and *B* on the curve, x = 2 and x = 3 respectively.

The region S is bounded by the curve, the straight line through B and (2, 0), and the line through A parallel to the y-axis. The region S is shown shaded in Figure 2.

(c) Use your answer to part (b) to find an approximate value for the area of S.

(3)

6.

7. (*a*) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0.$$
 (2)

(*b*) Hence solve, for $0 \le x < 360^\circ$,

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

(5)

(2)

(6)

- 8. (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
 - (*b*) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0,$$

giving your answers to 2 decimal places where appropriate.

9. The points *A* and *B* have coordinates (-2, 11) and (8, 1) respectively.

Given that *AB* is a diameter of the circle *C*,

- (a) show that the centre of C has coordinates (3, 6),
- (b) find an equation for C. (4)
- (c) Verify that the point (10, 7) lies on C.

(1)

(1)

(d) Find an equation of the tangent to C at the point (10, 7), giving your answer in the form y = mx + c, where m and c are constants. (4)

10. The volume $V \text{ cm}^3$ of a box, of height x cm, is given by

$$V = 4x(5 - x)^2, \quad 0 < x < 5.$$

(2)

TOTAL FOR PAPER: 75 MARKS

END

January 2011 Core Mathematics C2 6664 Mark Scheme

Question	Scheme	Marks
Number 1.		
(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting $f(1)$ or $f(-1)$.	M1
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$ (as required) AG	A1 * cso (2)
(b)	Attempting $f(-2)$ or $f(2)$.	M1
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1 cso
		(5) [7]
	Notes	[, [,]
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to result given on the paper as $a + b = 3$. Note that the answer is given in part (a).	give the
(b)	M1: attempting either $f(-2)$ or $f(2)$. A1: <u>correct underlined equation</u> in <i>a</i> and <i>b</i> ; eg <u>16-8+8-2a+b=-8</u> or equivale eg $-2a + b = -24$. dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in . Note that this mark is dependent upon the award of the first method mark. A1: any one of $a = 9$ or $b = -6$. A1: both $a = 9$ and $b = -6$ and a correct solution only.	
	Alternative Method of Long Division: (a) M1 for long division by $(x - 1)$ to give a remainder in <i>a</i> and <i>b</i> which is independ A1 for {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answe (b) M1 for long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independ A1 for {Remainder =} $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }. Then dM1A1A1 are applied in the same way as before.	er given.)

Question	Scheme	Marks				
Number 2.						
	$11^{2} = 8^{2} + 7^{2} - (2 \times 8 \times 7 \cos C)$	M1				
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} $ (or equivalent)	A1				
	$\left\{ \hat{C} = 1.64228 \right\} \Rightarrow \hat{C} = \operatorname{awrt} 1.64$	A1 cso				
		(3)				
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1				
	$=\frac{1}{2}(7 \times 8)\sin C$ using the value of their C from part (a).	A1 ft				
	$\{= 27.92848 \text{ or } 27.93297\} = awrt 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ}\text{)}$	A1 cso				
		(3) [6]				
	Notes					
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11 \cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11 \cos C)$	$\cos C$				
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$					
	$2 \times 7 \times 11$ $2 \times 8 \times 11$ 1 st A1: Rearranged correctly to make $\cos C =$ and numerically correct (possibly					
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$					
	$\cos C = \operatorname{awrt} - 0.071.$					
	SC: Also allow 1^{st} A1 for $112\cos C = -8$ or equivalent.					
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.					
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.					
	2^{nd} A1: for awrt 1.64 cao					
	Note that $A = 0.6876^{\circ}$ (or 39.401°), $B = 0.8116^{\circ}$ (or 46.503°)					
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1^{st} A1; their <i>C</i> can either be in degrees or radians.					
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of	of awrt				
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A					
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1.					
	Special Case: If the candidate gives awrt 27.9 from any of the below then awar M1A1A1.	ď				
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\cos(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\cos(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2$	vrt 27.9.				
	<u>Alternative: Hero's Formula:</u> $A = \sqrt{13(13 - 11)(13 - 8)(13 - 7)} = \text{awrt } 27.9$, where N	M1 is				
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct applic					
	the formula.					

Question	Scheme	Marks		
Number 3.				
	(a) $ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).			
	$r^3 = \frac{-6}{750}$	M1		
	$r = -\frac{1}{5}$ Correct answer from no working, except for special case below gains all three marks.	A1		
		(3)		
(b)	a(-0.2) = 750	M1		
	$a\left\{=\frac{750}{-0.2}\right\}=-3750$	A1 ft		
		(2)		
(c)	Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{10.2}$	M1		
	So, $S_{\infty} = -3125$	A1		
		(2)		
		[7]		
	<u>Notes</u>			
(a)	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing	(a) or		
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is M0			
	Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ are			
	fine for the award of M1.			
	SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$			
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award	d of M1.		
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.			
(b)	M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$	50 or		
	$\{a=\}\frac{750}{r}$ or $ar^4 = -6$ or $\{a=\}\frac{-6}{r^4}$ - in both a and r . No slips allowed here for M1			
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed ei	ther as		
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or correct to			
(-)	awrt 1 dp.			
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	neir a		
	and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125			
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.			

Question Number	Scheme	Marks		
4. (a)	Seeing –1 and 5. (See note below.)	B1 (1)		
(b)	$ (x+1)(x-5) = \underline{x^2 - 4x - 5} \text{ or } \underline{x^2 - 5x + x - 5} $ $ \int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\} $ $ \begin{bmatrix} x^3}{3} - \frac{4x^2}{2} - 5x \end{bmatrix}_{-1}^{5} = (\dots, -) - (\dots, -) $ $ \begin{bmatrix} \frac{x^3}{3} - \frac{4x^2}{2} - 5x \end{bmatrix}_{-1}^{5} = (\dots, -) - (\dots, -) $ $ \begin{bmatrix} \frac{125}{3} - \frac{100}{2} - 25 \\ -(\frac{1}{3} - 2 + 5) \\ -(\frac{100}{3}) - (\frac{8}{3}) = -36 $ $ M: x^n \to x^{n+1} \text{ for any one term.} $ $ I^{\text{st}} \text{ A1 at least two out of three terms correctly ft.} $ $ Substitutes 5 \text{ and } -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round. $	<u>B1</u> M1A1ft A1 dM1		
	$\left(\begin{array}{c} (3) \\ 3\end{array}\right) \\ \text{Hence, Area} = 36 \\ \text{Final answer must be 36, not } -36 \\ Final answe$	A1 (6) [7]		
	Notes			
	B1: for -1 and 5. Note that $(-1, 0)$ and $(5, 0)$ are acceptable for B1. Also allow $(0, -1)$ and $(0, 5)$ generously for B1. Note that if a candidate writes down that $A: (5,0)$, $B: (-1,0)$, (ie <i>A</i> and <i>B</i> interchanged,) then B0. Also allow values inserted in the correct position on the <i>x</i> -axis of the graph.			
(b)	(b) B1 for $x^2 - 4x - 5$ or $x^2 - 5x + x - 5$. If you believe that the candidate is applying the Way method then $-x^2 + 4x + 5$ or $-x^2 + 5x - x + 5$ would then be fine for B1. 1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that $-5 \to 5x$ is sufficient for M1. 1 st A1 at least two out of three terms correctly ft from their multiplied out brackets. 2 nd A1 for correct integration only and no follow through. Ignore the use of a '+c'. Allow 2 nd A1 also for $\frac{x^3}{3} - \frac{5x^2}{2} + \frac{x^2}{2} - 5x$. Note that $-\frac{5x^2}{2} + \frac{x^2}{2}$ only counts as one integraterm for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark. 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in p (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x = -1$ in part (a).) (or the 1 the candidate has found from part(a)) into an "integrated function" and subtracts, either war round. 3 rd A1: For a final answer of 36, not -36. Note: An alternative method exists where the candidate states from the outset that Area $(R) = -\int_{-1}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.			

Question	Scheme	Marks	
Number			
5. (a)	$\binom{40}{4} = \frac{40!}{4!b!}; (1+x)^n \text{ coefficients of } x^4 \text{ and } x^5 \text{ are } p \text{ and } q \text{ respectively.}$ b = 36	B1 (1)	
(b)	Candidates should usually "identify" two terms as their <i>p</i> and <i>q</i> respectively.	(1)	
(b)	Term 1: $\begin{pmatrix} 40 \\ 4 \end{pmatrix}$ or ${}^{40}C_4$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390Any one of Term 1 or Term 2 Correct. (Ignore the label of p and/or q .)	M1	
	$2: \begin{pmatrix} 40\\5 \end{pmatrix} \text{ or } {}^{40}C_5 \text{ or } \frac{40!}{5!35!} \text{ or } \frac{40(39)(38)(37)(36)}{5!} \text{ or } 658008 \qquad \qquad \text{Both of them correct.} $ (Ignore the label of p and/or q .)		
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe		
		(3) [4]	
	Notes		
(a)	B1: for only $b = 36$.		
(b)	The candidate may expand out their binomial series. At this stage no marks should be until they start to identify either one or both of the terms that they want to focus on. identify their terms then if one out of two of them (ignoring which one is <i>p</i> and which is correct then award M1. If both of the terms are identified correctly (ignoring which and which one is <i>q</i>) then award the first A1. Term $1 = \begin{pmatrix} 40 \\ 4 \end{pmatrix} x^4$ or ${}^{40}C_4(x^4)$ or $\frac{40!}{4!36!}x^4$ or $\frac{40(39)(38)(37)}{4!}x^4$ or $91390x^4$, Term $2 = \begin{pmatrix} 40 \\ 5 \end{pmatrix} x^5$ or ${}^{40}C_5(x^5)$ or $\frac{40!}{5!35!}x^5$ or $\frac{40(39)(38)(37)(36)}{5!}x^5$ or $658008x^5$ are fine for any (or both) of the first two marks in part (b). 2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2^{nd} A1 mark. SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0.	Once they h one is q) th one is p	
	Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.		

Question Number	Scheme	Marks
6. (a)	x 22.252.52.753 y 0.50.380.2985070.2416910.2At $\{x = 2.5, \}$ $y = 0.30$ (only)At least one y-ordinAt $\{x = 2.75, \}$ $y = 0.24$ (only)Both y-ordin	
	Outside brackets	
	$\frac{\text{For structure of }}{1}$	
(b)	$\frac{1}{2} \times 0.25 ; \times \left\{ \underbrace{0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)}_{\text{inside brackets wh}} \right\} $ Correc inside brackets wh be multiplied by the	A1./
	$\left\{=\frac{1}{8}(2.54)\right\} = $ awrt 0.32	awrt 0.32 A1
		(4)
(c)	Area of triangle $=\frac{1}{2} \times 1 \times 0.2 = 0.1$	B1
	Area(S) = "0.3175" - 0.1	M1
	= 0.2175	A1 ft
		(3)
		[9]

Question Number	Scheme	Marks
	Notes	
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	
	M1 requires the correct {} bracket structure. This is for the first bracket to contain first	у-
	ordinate plus last y-ordinate and the second bracket to be the summation of the remaining y ordinates in the table.	у-
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) a allowed in the second bracket and the second bracket must be multiplied by 2. Only one c error is allowed here in the $2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ bracket.	
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part	(a).
	A1 for answer of awrt 0.32.	
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	e
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$	
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$	
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$	
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.	
	Need to see trapezium rule – answer only (with no working) gains no marks. <u>Alternative:</u> Separate trapezia may be used, and this can be marked equivalently. (See appendix.)	
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the
	 diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Striattempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow A they round their answer correct to 2 dp. 	e

Question Number	Scheme	Marks			
7.					
(a)	$3\sin^2 x + 7\sin x = \cos^2 x - 4$; $0 \le x < 360^\circ$				
	$3\sin^2 x + 7\sin x = (1 - \sin^2 x) - 4$	M1			
	$4\sin^2 x + 7\sin x + 3 = 0$ AG	A1 * cso			
		(2)			
(b)	$(4\sin x + 3)(\sin x + 1) = 0$ Valid attempt at factorisation and $\sin x =$	M1			
	$\sin x = -\frac{3}{4}$, $\sin x = -1$ Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1			
	$(\alpha = 48.59)$				
	$x = 180 + 48.59$ or $x = 360 - 48.59$ Either $(180 + \alpha)$ or $(360 - \alpha)$	dM1			
	x = 228.59, x = 311.41 Both awrt 228.6 and awrt 311.4	A1			
	$\{\sin x = -1\} \Rightarrow x = 270 $				
		(5)			
		[7]			
	Notes				
(a)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$).				
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0.				
	A1 for obtaining the printed answer without error (except for implied use of zero.),	-			
	the equation at the end of the proof must be = 0. Solution just written only as abov score M1A1.	e would			
(b)					
()	attempt to find at least one of the solutions.				
	<i>Alternatively</i> , using a correct formula for solving the quadratic. Either the formula must be				
	stated correctly or the correct form must be implied by the substitution.				
	1^{st} A1 for the two correct values of $\sin x$. If they have used a substitution, a correct value of their x or their x				
	their s or their y or their x.				
	2^{nd} M1 for solving sin $x = -k$, $0 < k < 1$ and realising a solution is either of the form				
	$(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. Note that you cannot access this mark from				
	$\sin x = -1 \Rightarrow x = 270$. Note that this mark is dependent upon the 1 st M1 mark awarded.				
	2^{nd} A1 for both awrt 228.6 and awrt 311.4				
	B1 for 270.				
	If there are any EXTRA solutions inside the range $0 \le x < 360^{\circ}$ and the candidate would				
	otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark of the question)	in this part			
	of the question). Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$.				
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.7123$				
	If a candidate works in radians then mark part (b) as above awarding the 2^{nd} A1 for	both awrt			
	4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score FULL				
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the question.) No working: Award B1 for 270 seen without any working.				
Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working.					
	Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any work	ing.			

Question Number	Scheme	Ма	rks	
8. (a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$			
(u)				
	At least two of the three criteria correct. (See notes below.)	B1		
	All three criteria correct.	B1		
	(See notes below.)			
	(0, 1)			
			(2)	
(b)	Forming a quadratic {using	M1		
	$y^2 - 4y + 3 \{= 0\}$ "y" = 7 ^x }.			
	$y^2 - 4y + 3 = 0$	A1		
	{ $(y-3)(y-1) = 0$ or $(7^{x}-3)(7^{x}-1) = 0$ }			
	$y = 3$, $y = 1$ or $7^{x} = 3$, $7^{x} = 1$ Both $y = 3$ and $y = 1$.	A1		
	$\{7^x = 3 \Rightarrow\} x \log 7 = \log 3$			
	or $x = \frac{\log 3}{\log 7}$ or $x = \log_7 3$ A valid method for solving $7^x = k$ where $k > 0, k \neq 1$	dM1		
	of $x = \frac{1}{\log 7}$ of $x = \log_7 5$			
	x = 0.5645 0.565 or awrt 0.56	A1		
	x = 0 $x = 0$ stated as a solution.	B1		
			(6) [8]	
	Notes		[0]	
(a)				
	B1B1: All three criteria correct.			
	Criteria number 1: Correct shape of curve for $x \ge 0$.			
	Criteria number 2: Correct shape of curve for $x < 0$.			
	Criteria number 3: (0, 1) stated or 1 marked on the y-axis. Allow (1, 0) rather than (0, 1			
	marked in the "correct" place on the y-axis.			

Question Number	Scheme	Marks		
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7 ^x .}			
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 \{= 0\}$.			
	Can use any variable here, eg: y, x or 7^x . Allow M1A1 for $x^2 - 4x + 3 \{=0\}$.			
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.			
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or		
	$(7^x)^2 - 4(7^x) + 3 = 0.$			
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accumark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate applying logarithms on these.			
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.			
	3^{rd} dM1 for solving $7^x = k, k > 0, k \neq 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log \frac{1}{2} \ln 7$	$_{7} k$.		
	dM1 is dependent upon the award of M1.			
2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from <i>any</i> working				

Question Number	Scheme	Marks		
9 .				
	$C\left(\frac{-2+8}{2},\frac{11+1}{2}\right) = C(3,6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving (3,6)	B1*		
(b)	$(8-3)^{2} + (1-6)^{2} \text{ or } \sqrt{(8-3)^{2} + (1-6)^{2}} \text{ or}$ $(-2-3)^{2} + (11-6)^{2} \text{ or } \sqrt{(-2-3)^{2} + (11-6)^{2}}$ Applies distance formula in order to find the radius. Correct application of formula.	(1) M1		
		A1		
	$(x-3)^{2} + (y-6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right) \qquad (x \pm 3)^{2} + (y \pm 6)^{2} = k,$ k is a positive <u>value</u> .	M1		
	$(x-3)^2 + (y-6)^2 = 50$ (Not 7.07 ²)	A1 (4)		
(c)	{For (10, 7), } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u>		
		(1)		
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1		
	Gradient of tangent = $\frac{-7}{1}$ Using a perpendicular gradient method. $y - 7 = -7(x - 10)$ $y - 7 = (\text{their gradient})(x - 10)$ $y = -7x + 77$ $y = -7x + 77$ or $y = 77 - 7x$	M1		
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1		
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao		
		(4) [10]		
	Notes			
(a)	Alternative method: $C\left(-2 + \frac{8-2}{2}, 11 + \frac{1-11}{2}\right)$ or $C\left(8 + \frac{-2-8}{2}, 1 + \frac{11-1}{2}\right)$			
(b)	You need to be convinced that the candidate is attempting to work out the radius and	not the		
	diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for			
	$\frac{(-2-8)^2 + (11-1)^2}{(-2-8)^2 + (11-1)^2}$			
	2			
	Award 1 st M1A1 for $\frac{(-2-8)^2 + (11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2 + (11-1)^2}}{2}$.			
	Correct answer in (b) with no working scores full marks.			
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.			
	Also to gain this mark candidates need to have the correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify (10, 7) lies on <i>C</i> without a corr Also a candidate could either substitute $x = 10$ in <i>C</i> to find $y = 7$ or substitute $y = 7$ in find $x = 10$.	rect C.		

Question Number	Scheme	Marks		
(d)	2^{nd} M1 mark also for the complete method of applying 7 = (their gradient)(10) + c, finding c.			
	Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .			
	Alternative: For first two marks (differentiation):			
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.			
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must contain both			
	<i>x</i> and <i>y</i> . (This M mark can be awarded generously, even if the attempted "differentiat not "implicit".)	tion" is		
	<u>Alternative</u> : $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to			
	y = -7x + 77.			

Question Number	Scheme	Marks	
10.			
(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$		
	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$, where $\alpha, \beta, \gamma \neq 0$	M1	
	So, $V = 100x - 40x^2 + 4x^3$ $V = 100x - 40x^2 + 4x^3$	A1	
	$\frac{dV}{dr} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly.	M1	
	$dx = 100 - 80x + 12x^2$	A1 cao	
	dV	(4)	
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	M1	
	$\left\{ \Rightarrow 4\left(3x^2 - 20x + 25\right) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \right\}$		
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = $ awrt 1.67	A1	
	$x = \frac{5}{3}, V = 4\left(\frac{5}{3}\right)\left(5 - \frac{5}{3}\right)^2$ Substitute candidate's value of x where $0 < x < 5$ into a formula for V.	dM1	
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1	A1	
		(4)	
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1	
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$		
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V \text{ is a maximum} \qquad \frac{d^2V}{dx^2} = -40 \text{ and } \underline{<0 \text{ or negative and maximum}}.$	A1 cso	
		(2) [10]	
	Notes		
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.		
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1 st M	1 1.	
	1 st A1 for either $100x - 40x^2 + 4x^3$ or $100x - 20x^2 - 20x^2 + 4x^3$.		
	2 nd M1 for any two of their expanded terms differentiated correctly. NB: If expanded		
	expression is divided by a constant, then the 2 nd M1 can be awarded for at least two te correct.		
	Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated contrast of the second	rrectly.	
	2^{nd} A1 for $100 - 80x + 12x^2$, cao .	2	
	Note: See appendix for those candidates who apply the product rule of differentiation	on.	

Question Number	Scheme			
(b)	Note you can mark parts (b) and (c) together.			
	Ignore the extra solution of $x = 5$ (and $V = 0$). Any extra solutions for V inside found for			
	values inside the range of x, then award the final A0.			
(c)	M1 is for their $\frac{dV}{dx}$ differentiated correctly (follow through) to give $\frac{d^2V}{dx^2}$.			
	A1 for all three of $\frac{d^2V}{dx^2} = -40$ and $\underline{< 0 \text{ or negative}}$ and $\underline{\text{maximum}}$.			
	Ignore any second derivative testing on $x = 5$ for the final accuracy mark.			
	Alternative Method: Gradient Test: M1 for finding the gradient either side of their x-value			
	from part (b) where $0 < x < 5$. A1 for both gradients calculated correctly to the near integer,			
	<u>using > 0 and < 0 respectively or a correct sketch and maximum</u> . (See appendix for gradient			
	values.)			

Question Number	Scheme		Marks
Aliter 4 (b) Way 2	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{3} \text{ or } \frac{x^2 - 5x + x - 5}{2}$ $-\int (x^2 - 4x - 5) dx = -\frac{x^3}{3} + \frac{4x^2}{2} + 5x \left\{ + c \right\}$ $\left[-\frac{x^3}{3} + \frac{4x^2}{2} + 5x \right]_{-1}^5 = (\dots) - (\dots)$ $\left\{ \left(-\frac{125}{3} + \frac{100}{2} + 25 \right) - \left(\frac{1}{3} + 2 - 5 \right) \right\}$ $\left\{ = \left(\frac{100}{3} \right) - \left(-\frac{8}{3} \right)$ Hence, Area = 36	Can be implied by later working. M: $x^n \rightarrow x^{n+1}$ for any one term. 1 st A1 any two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	B1 M1A1ft A1 dM1 A1 (6)

Question Number	Scheme		Marks
Aliter 6 (b) Way 2	$0.25 \times \left\{ \frac{0.5 + 0.38}{2} + \frac{0.38 + 0.30}{2} + \frac{0.30 + 0.24}{2} + \frac{0.24 + 0.2}{2} \right\}$ which is equivalent to: $\frac{1}{2} \times 0.25 ; \times \left\{ (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}$ $\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	0.25 and a divisor of 2 on all terms inside brackets. One of first and last ordinates, two of the middle ordinates inside brackets ignoring the denominator of 2. Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out. awrt 0.32	B1 M1 <u>A1</u> √ A1 (4)

Question Number	Scheme	Mar	⁻ ks	
Aliter	Product Rule Method:			
10 (a)				
Way2	du dv			
	$\begin{cases} u = 4x \qquad v = (5-x)^2 \\ \frac{du}{dx} = 4 \qquad \qquad \frac{dv}{dx} = 2(5-x)^1(-1) \end{cases}$			
	\pm (their u')(5 - x) ² \pm (4x)(their v')	M1		
	A correct attempt at differentiating	dM1		
	$\frac{dy}{dx} = 4(5-x)^2 + 4x(2)(5-x)^1(-1)$ any one of either <i>u</i> or <i>v</i> correctly.			
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	A1		
	$\frac{dy}{dx} = 4(5-x)^2 - 8x(5-x) \qquad 4(5-x)^2 - 8x(5-x)$	A1		
	dx dx		(4)	
Aliter			(.)	
10 (a)	$\left(u = 4x \qquad v = 25 - 10x + x^2 \right)$			
Way3	$\begin{cases} u = 4x \qquad v = 25 - 10x + x^2 \\ \frac{du}{dx} = 4 \qquad \qquad \frac{dv}{dx} = -10 + 2x \end{cases}$			
	$\left[\frac{dx}{dx} = 4 \qquad \frac{dx}{dx} = -10 + 2x\right]$			
	\pm (their u')(their(5 - x) ²) \pm (4 x)(their v')	M1		
	A correct attempt at differentiating			
	$\frac{dy}{dx} = 4(25 - 10x + x^2) + 4x(-10 + 2x)$ any one of either <i>u</i> or their <i>v</i>	dM1		
	$\frac{dx}{dx} = \frac{dx}{dx} + dx$			
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	Δ1		
	$\frac{dV}{dx} = 100 - 80x + 12x^2 \qquad 100 - 80x + 12x^2$	A1		
			(4)	
	Note: The candidate needs to use a complete product rule method in order for you to		•	
	award the first M1 mark here. The second method mark is dependent on the first			
	method mark awarded.			

Question Number	Scheme	Marks					
Aliter	Gradient Test Method: $dV = 100 = 80 \times 10^{-2}$						
10 (c)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 100 - 80x + 12x^2$						
Way 2	Helpful table!						
	x $\frac{dV}{dx}$ 0.843.680.937.721321.126.521.221.281.316.281.411.521.42910.2041.571.62.721.7-1.321.8-5.121.9-8.682-122.1-15.082.2-17.922.3-20.522.4-22.882.5-25						

Question Number			Scheme	Ma	rks
8 (b)) Method og	f trial and improv	vement		
	Helpful ta				
	<i>x</i>	$y = 7^{2x} - 4(7^x) + 3$			
	0	0			
	0.1	-0.38348			
	0.2	-0.72519			
	0.3	-0.95706			
	0.4	-0.96835			
	0.5	-0.58301			
	0.51	-0.51316			
	0.52	-0.43638			
	0.53	-0.3523			
	0.54	-0.26055			
	0.55	-0.16074			
	0.56	-0.05247			
	0.561	-0.04116			
	0.562	-0.02976			
	0.563	-0.01828			
	0.564	-0.0067			
	0.565	0.00497			
	0.57	0.064688			
	0.58	0.19118			
	0.59	0.327466			
	0.6	0.474029			
	0.7	2.62723			
	0.8	6.525565			
	0.9	13.15414			
		24			
			ad improvement by trialing $(45) = $ value and f(value between 0.5645 and 1) = value	M1	
	•		rrect to 1sf or truncated 1sf.	A1	
			t to 1sf or truncated 1sf.	A1	
			2 dp by finding by trialing		
		tween 0.56 and 0.5	-	M1	
		tween 0.5645 and (
	Both value $x = 0.56$ (c		r truncated 1sf and the confirmation that the root is	A1	
	x = 0			B1	(
	Note: If a	a candidata goog f	rom $7^x = 3$ with no working to $x = 0.5645$ then give		(
	M1A1 im		from $7^x = 3$ with no working to $x = 0.5645$ then give		